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Abstract:

Physiography and land cover determine the hydrologic response of watersheds to climatic events. However, vast differences in
climate regimes and variation of landscape attributes among watersheds (including size) have prevented the establishment of
general relationships between land cover and runoff patterns across broad scales. This paper addresses these difficulties by using
power spectral analysis to characterize area-normalized runoff patterns and then compare these patterns with landscape features
among watersheds within the same physiographic region. We assembled long-term precipitation and runoff data for 87
watersheds (first to seventh order) within the eastern Piedmont (USA) that contained a wide variety of land cover types, collected
environmental data for each watershed, and compared the datasets using a variety of statistical measures. The effect of land cover
on runoff patterns was confirmed. Urban-dominated watersheds were flashier and had less hydrologic memory compared with
forest-dominated watersheds, whereas watersheds with high wetland coverage had greater hydrologic memory. We also detected
a 10–15% urban threshold above which urban coverage became the dominant control on runoff patterns. When spectral
properties of runoff were compared across stream orders, a threshold after the third order was detected at which watershed
processes became dominant over precipitation regime in determining runoff patterns. Finally, we present a matrix
that characterizes the hydrologic signatures of rivers based on precipitation versus landscape effects and low-frequency versus
high-frequency events. The concepts and methods presented can be generally applied to all river systems to characterize
multiscale patterns of watershed runoff. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

The unique structure of each landscape – its topography,
soils, hydrologic pathways, and land cover – defines the
hydrologic response of watersheds to local weather events.
This obvious relationship between structure and process
should allow the determination of how landscape proper-
ties affect hydrology and therefore simplify the prediction
of hydrologic response of watersheds to variable climatic
conditions (Black, 1991). Although a variety of methods
have been used to summarize patterns of water runoff,
including statistical moments (Richter et al., 1996),
geochemical/isotopic tracers (Brown et al., 1999), rain-
fall–runoff models (Beighley et al., 2005), wavelets (Smith
et al., 1998), multifractals (Tessier et al., 1996), and
spectral analysis (Fleming et al., 2002), a definitive
relationship between landscape structure and runoff
patterns over broad areas has yet to be established.
Two factors have complicated the assessment of

pattern–process relationships at landscape scales. First,
the frequency, duration, and magnitude of precipitation
events – the drivers of watershed hydrology – vary greatly
in time and space, requiring long-term records to define
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significant relationships. However, long-term hydrologic
records rarely satisfy the statistical requirement of statio-
narity because both climate and land cover have been
changing over the last century. These simultaneous trends
can interact to produce effects that are neither independent
nor additive. For instance, human development has tended
to reduce the amount of wetlands and increase sealed
surfaces in urbanized watersheds. Although wetlands retain
water and reduce levels of peak runoff, sealed surfaces
counter these effects by reducing storage and increasing
overland flows (Eshleman, 2004). The construction of
reservoirs, which retard water movement and reduce the
variance and peak flows associated with climatic events
(Singer, 2007), further complicates the establishment of
pattern–process relationships at landscape scales.
Secondly, variation in the size of watersheds and the

heterogeneity of landscapes makes direct comparisons
problematic. Runoff patterns within small watersheds tend
to be more responsive to precipitation inputs, whereas
landscape features become more important as watershed
size increases (Tessier et al., 1996; Sabo and Post, 2008);
however, this issue of scale effects is still a matter of
ongoing discussion (Shaman et al., 2004; Hrachowitz et al.,
2010; Frisbee et al., 2012). The effects of land cover are
easier to discern when land cover is relatively homogeneous
(mostly forested vs highly developed), but more difficult to
establish when there is a broad mix of land cover types, as
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most watersheds have (Poff et al., 2006; Oudin et al., 2008).
Thus, the comparison of multiple watersheds of different
sizes from diverse geographic regions, as many studies have
attempted, produces results dominated by these scale-
dependent effects (Beven, 2000).
This paper addresses these difficulties by using a

multiscale approach to compare landscape structure and
hydrologic properties of watersheds within the same
physiographic region. The Piedmont physiographic prov-
ince of the USA is situated between the Appalachian
Mountains and the Atlantic Coastal Plain, extending from
New Jersey in the north to Alabama in the south (Figure 1).
Watersheds were selected for comparison in this region
because of the following: (i) similar morphometry among
watersheds (pear-shaped or oval-shaped basins with a
dendritic channel pattern), (ii) moderate relief preventing
runoff from being dominated by topography, yet not so flat
that subsurface controls dominate, (iii) similar geology
(thick clay-rich soils underlain by deeply weathered
bedrock, and relatively few solid outcrops), (iv) similar
climate (midlatitude, humid subtropical climate with no dry
season; Köppen Cfa), (v) diversity of land cover types
including large areas of urban development, extensive
agriculture, and both large and small forested areas,
(vi) numerous precipitation and flow gauges with long
continuous daily records. By keeping physiography as
constant as possible over such a large area, this experimental
design maximizes the potential for identifying effects of
land cover on watershed hydrology.
Power spectral analysis (PSA) was used to assess

relationships between periodic patterns of precipitation
and runoff for all watersheds. PSA provides an ensemble
measure across all periods within the frequency domain,
Figure 1. Locations and land cover (NLCD 2001) of the study’s 87 wat
abbreviations are inc

Copyright © 2013 John Wiley & Sons, Ltd.
allowing patterns at multiple temporal scales to be evaluated
(Fleming et al., 2002; Sabo and Post, 2008). The existence
of linear relationships between spectral power and period
(1/f, where f is frequency) indicates scale invariance over
the temporal domain for which linearity holds (Gupta et al.,
1994; Pandey et al., 1998). These properties have made
PSA a useful tool for the analysis of a wide assortment of
environmental data (Lovejoy and Schertzer, 1995; Halley,
1996; Hodell et al., 2001; Perron et al., 2008), with the most
widespread application being for hydrological analyses (for
recent examples, see Kirchner et al., 2000; Hrachowitz
et al., 2009). The fine temporal resolution and long duration
of discharge records from monitored stations provide data
well suited for PSA. The combined analysis of measured
precipitation and runoff data for each watershed also makes
PSA useful for assessing the relationships between
landscape structure and hydrologic patterns.
The first use of PSA comparing daily runoff time series

for multiple watersheds was performed by Tessier et al.
(1996) on 30 small watersheds (40–200 km2) in France
that had been minimally affected by anthropogenic
change. They found that PSA of runoff data mirrored a
parallel PSA of rainfall, the only difference being less
variability in runoff spectra, which they attributed to
watershed characteristics attenuating the rainfall signal. In
both the rainfall and runoff spectra, Tessier and
colleagues found two consistent features: (i) a change in
spectral slope at 16 days (subsequently referred to as the
cross-point) attributed to the frequency and duration of
synoptic weather patterns and (ii) a distinct peak in
spectral power at 1 year attributed to strong seasonal
cycles in water budgets (e.g. winter–spring wet periods vs
summer–fall dry periods). Other studies from a variety of
ersheds within the Piedmont physiographic province in the USA. State
luded for reference

Hydrol. Process. (2013)
DOI: 10.1002/hyp
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watersheds have produced similar results: a spectral peak
at 1 year and a cross-point that varies between 3 and
24 days (Pandey et al., 1998; Sauquet et al., 2008).
Whereas the previous authors emphasized the similar-

ity of PSA results among watersheds, Sabo and Post
(2008) examined PSA differences among watersheds due
to differences in physiographic properties. Although Sabo
and Post did not make direct comparisons between
landscape attributes and PSA metrics, they did find a
trend in one PSA metric: the spectral slope (�b0), which
is a direct reflection of the composite pattern of timescales
of the dominant processes active in the watershed, or in
other words, a reflection of the hydrologic response
function according to which precipitation signals are
routed through the watershed (Kirchner et al., 2000).
Sabo and Post (2008) found that the value of �b0
(commonly referred to as spectral colour or 1/f noise)
increased (or reddened) from low �b0 for flashy streams
to high �b0 for less responsive, groundwater-dominated
streams. Because higher spectral slopes indicate greater
temporal autocorrelation, watersheds with high �b0 will
have a longer system memory of previous hydrologic
events, which we henceforth refer to as hydrologic
memory (Halley, 1996; Mudelsee, 2007). It is important
to note that spectral slopes are not a direct measure of
water transit time as they do not take into account actual
particle transport (for recent research on water travel time
scaling, see McGuire et al., 2005; Hrachowitz et al.,
2010); however, they do reflect the response of runoff to
precipitation and landscape attributes (Tessier et al.,
1996; Godsey et al., 2010).
This paper uses long-term records from 87 Piedmont

watersheds tomore fully explore relationships between PSA
and landscape structure, with special emphasis on the effects
of variation in land cover. We first summarize the statistical
attributes of PSA and landscape structure variables and then
use canonical correlation to test the overall hypothesis that
significant dependencies between land cover and runoff
exist. Multiple statistical tests are then used to define those
variables that best explain changes in runoff patterns. The
changes in relationships across stream orders, from first-
order headwater streams to large seventh-order streams are
also examined. Throughout the manuscript, we address the
general question as to whether land cover has a detectable
influence on the hydrologic memory of watersheds and, in
particular, how development has affected this memory.
Finally, we identify a subset of spectral runoff metrics that
can be used to summarize hydrologic signatures of water-
sheds. By characterizing relationships between landscape
structure and hydrology, this work provides a basis for
predicting future runoff patterns produced by changing
weather and human alterations of the landscape.
METHODS

Watersheds

Landscape and hydrologic data were assembled from
watersheds with at least 90% of their area within the
Copyright © 2013 John Wiley & Sons, Ltd.
Piedmont physiographic region of the eastern USA (defined
using the ecoregion classification of Omernik, 1987) and
with 40years of continuous daily discharge data for the water
year (1 Oct–30 Sep) from 1969 to 2008 (Figure 1). The
requirement of 40 years insured a sufficient time-series length
for PSA to characterize low-frequency events but not so long
that there would be an insufficient number of watersheds for
comparison. The same record length (1969–2008) was used
for all analyses to minimize temporal differences in climate
and land cover among watersheds. Daily mean discharge
(m3/s) records were obtained from the US Geological
Survey, and daily total precipitation (cm/day) records were
collected from the USHistorical Climatology Network using
the station closest to the centre of thewatershed. Precipitation
data were used to illustrate differences in spectral properties
between runoff and precipitation at a station, and thus, we did
not attempt to characterize the spatial distribution of
precipitation across watersheds.
In five of the 87 datasets, missing daily discharge values

(always< 30days) were filled by linear interpolation. A
Monte Carlo sensitivity analysis was performed (n=100) by
randomly replacing continuous 30-day records by linear
interpolation for ten different watershed datasets (a total of
1000 data alterations). The results showed that the average
change in PSAvariables was generally<1%with only four of
70 contrasts exceeding this criterion, but in all cases, the
maximal change remained <2%. Missing daily precipitation
values were replaced by values from the next nearest US
HistoricalClimatologyNetwork station, usuallywithin 60km.

Landscape variables

A series of landscape variables that have been identified as
having important effects on hydrologic processes
(Black, 1991; Buttle, 2006) were assembled to characterize
the structure of each watershed (Table I). These variables
were organized into morphometric, geologic, hydrologic, and
land cover variables. After deriving watershed boundaries
associated with each flow gauge using a 30-m flow direction
grid, we calculated watershed morphometrics using the
National Elevation Dataset and National Hydrography
Dataset. Mean silt-clay percentage (SC%; upper 10 cm) and
mean depth to bedrock (Zbr) were calculated from the 1-km
CONUS-SOIL dataset (Miller and White, 1998), which is a
derivation of the US Department of Agriculture’s State Soil
Geographic Data Base. Reservoir storage (RS%) was
calculated as the percentage of totalwatershed runoff (average
annual flow volume measured at the outlet gauge plus
reservoir storage) stored in reservoirs within the watershed.
We calculated precipitation effectiveness (Rpe) by dividing
average annual precipitation by average annual temperature
(1961–1990), using the 100 dataset of New et al. (2002).
Anderson level I classification of the 30-m 2001

National Land Cover Database (NLCD; Multi-resolution
Land Characteristics Consortium, 2001) was used to
characterize the proportional land cover types in each
watershed. Water and wetlands were combined because
of their indistinguishable effect on water storage.
Temporal changes in land cover over the 40-year study
period were approximated and assessed by comparing the
Hydrol. Process. (2013)
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Table I. Landscape variables characterizing the 87 watersheds within the Piedmont of the eastern USA

Variable Definition (units) Source (resolution)

Morphometric variables
Area (A) Total watershed area above

stream gauge (km2)
National Elevation Dataset (30m)

Stream order (OHS) Stream order of watershed using
Horton–Strahler classification

National Hydrography Dataset (1 : 24 000)

Drainage density (Dd) Total length of streams per watershed
area (km/km2)

National Hydrography Dataset (1 : 24 000)

Mean channel slope (Sc) Slope of the main stem channel measured
from its source to watershed outlet (m/m)

National Elevation Dataset (30m) with
National Hydrography Dataset (1 : 24 000)

Basin form ratio (Rf) Basin area divided by the square of the
maximum basin length, as measured from
its outlet (km2/km2)

National Elevation Dataset (30m) with
National Hydrography Dataset (1 : 24 000)

Geologic variables
Silt-clay percentage (SC%) Proportion of surface soil (upper 10 cm)

that is below 63mm in texture (%)
Miller and White (1998) (1 : 250 000)

Depth to bedrock (Zbr) Mean depth to bedrock (cm) Miller and White (1998) (1 : 250 000)
Hydrologic variables
Reservoir storage percentage (RS%) Proportion of average annual runoff

normally stored in reservoirs (%)
National Inventory of Dams, 2007
(normal storage> 6.17Gl)

Precipitation effectiveness ratio (Rpe) Average annual precipitation over
average annual temperature (cm/�C)

New et al. (2002)) (100 lat/long)

Land cover variables
Percent water–wetland (%WW) Portion of area that is open water

and wetland (%)
National Land Cover Dataset, 2001 (30m)

Percent urban (%UR) Portion of area that is urban (%) National Land Cover Dataset, 2001 (30m)
Percent forest (%FO) Portion of area that is forest (%) National Land Cover Dataset, 2001 (30m)
Percent agriculture (%AG) Portion of area that is agriculture (%) National Land Cover Dataset, 2001 (30m)
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1975 NLCD (Mitchell et al., 1977; US Geological
Survey, 1998) with the 2001 NLCD. Given the coarser
resolution of the 1975 NLCD and its potential limitations
(Jawarneh and Julian, 2012), we did not incorporate
temporal land cover changes in our statistical analyses.
Although other variables than those listed in Table I

may have been used, we limited our selection to first-
order hydrologic controls (sensu Buttle, 2006) that
displayed minimal collinearity (Wang and Malanson,
2007). For example, basin relief ratio and mean channel
slope (Sc) are both expressions of elevation and are thus
highly correlated. For this and other similar cases, the
variable exhibiting the strongest relationship with the
dependent variables was retained.

Power spectral analyses

PSA is a form of analysis of variance of a Fourier-
transformed time series that partitions the variances at
frequencies (f) that are harmonics of the dataset (Platt and
Denman, 1975; Fleming et al., 2002). A plot of spectral
power, or variance, against 1/f illustrates the periodic
nature of precipitation and runoff (Fleming et al., 2002;
Sauquet et al., 2008). Excellent texts (Brockwell and
Davis, 1991; Bloomfield, 2000) and reviews (Platt and
Denman, 1975) describing the theory and methods of
PSA and its application to hydrologic data (McLeod and
Hipel, 1995; Fleming et al., 2002) are widely available.
Therefore, we focus here on the methods used to extract
PSA statistics from the 87 study watersheds.
We examined both precipitation and discharge records

for each watershed with leap days discarded to create
Copyright © 2013 John Wiley & Sons, Ltd.
complete, continuous records of exactly 365 days for all
years. Daily discharges were normalized by watershed area
so that spectral power would be comparable among
watersheds of different sizes. The spectrum routine of R
(R Development Core Team, 2008) was used to perform
PSA on the area-normalized discharge (henceforth runoff)
and precipitation time series. Because stationarity of the
time series is required by spectral analysis, spectrum
removes linear trends via regression before performing
PSA (Venables and Ripley, 2002). Examination revealed
that slopes associated with the time-dependent trends were
small:�2.97� 10�4 for runoff (m3/s/km2) and 1.10� 10�7

for precipitation (cm/day). Because daily values for
precipitation and runoff were time averaged, an aliasing
filter was not needed (Kirchner, 2005). Smoothed period-
ograms of the logarithms of spectral power versus 1/f were
produced for each analysis (Figure 2), and the statistical
attributes of PSA (described later) were obtained. Smooth-
ing of the periodograms was performed by spectrum using
three Daniell smoothers of lengths 7, 9, and 15 (Venables
and Ripley, 2002, p. 409) to remove noise and improve the
clarity of the spectral plots. Smoothing does reduce
estimates of power and slope but had minimal effect
(<2%) on the PSA statistical parameters reported here.
The statistical parameters extracted from each PSA

(Table II; Figure 2) include daily power (Pd), which is the
day-to-day variance of runoff (or rainfall); annual
power (Pa), which is the degree of variance associated
with year-to-year differences in runoff; spectral slope
(�b0), which is the rate of change in spectral power
across all periods (also an overall measure of temporal
Hydrol. Process. (2013)
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Figure 2. An example periodogram for runoff (left) and precipitation (right) from the Meherrin River basin (US Geological Survey 2051500). The
Meherrin River basin represents the average watershed in terms of area (1432km2), contains a mixture of land cover (69 %FO, 17 %AG, 4 %UR, 2 %WW),
and has little reservoir storage (0.07%). For simplicity, b0 is not illustrated. See text and Table II for the definition of spectral variables. Notice that the
low-frequency spectral slope (blf) is essentially 0 for precipitation (white noise) but is much steeper for runoff (pink noise). Also note the differences in

magnitude for spectral power (y-axis) between plots

Table II. Statistical variables produced by PSA of runoff and
precipitation data (i.e. spectral variables)

Variable Definition

Daily power (Pd) Spectral power at 1 day
Annual power (Pa) Spectral power at 1 year
Spectral slope (b0) Least squares regression slope

for the entire spectrum
Cross-point (fcp) The period (in days) at which

the break in scale occurs
between regression lines of low
and high frequencies

Cross-point power (Pcp) Spectral power at the cross-point
Spectral slope for
low-frequency domain (blf)

Least squares regression slope
for low-frequency spectra as
defined by the cross-point

Spectral slope for
high-frequency domain (bhf)

Least squares regression slope
for high-frequency spectra as
defined by the cross-point

SPECTRAL WATERSHEDS
autocorrelation with steeper slopes indicating greater
hydrologic memory within watersheds); cross-point (fcp),
which marks the change in slope separating high-frequency
from low-frequency periods; and cross-point power (Pcp),
which is the spectral power associated with fcp. The �bhf
and �blf are the spectral slopes associated with these high-
frequency and low-frequency domains, respectively.
The presence of a cross-point in the spectral plots and the

parameters associated with the linear relationships above
and below this cross-point were estimated by segmented
linear regression methods provided by the segmented
procedure in R (Muggeo, 2008). The segmented procedure
employs generalized linear models via an iteration proced-
ure starting from an initial estimate and then fits piecewise
linear relationships above and below this cross-point value.
Using the intermediate value from the range of previous
studies (Tessier et al., 1996; Pandey et al., 1998; Sauquet
et al., 2008), we chose 10 days as our initial estimate for all
plots. Because the expected cross-point occurs over a
Copyright © 2013 John Wiley & Sons, Ltd.
limited time span, the final estimate provided by segmented
was not sensitive to the initial estimate. Maximum
likelihood methods were used to obtain final estimates of
all parameters, including the location and confidence
estimates of cross-points (Muggeo, 2008).

Statistical analyses

Canonical correlation was used to test the overall
hypothesis that landscape attributes were related to
precipitation and runoff patterns within the Piedmont
watersheds. Canonical correlation analysis (CCA)
estimates correlations through linear combinations of
the multivariate dependent and independent variables
subject to the constraint that each set of linear factors and
corresponding correlations are independent of one
another (Shumway and Stoffer, 2000). We performed
CCAs (González and Déjean, 2009) in R using ten
landscape descriptors (Dd, Sc, Rf, Zbr, RS%, Rpe, %WW,
%UR, %FO, and %AG) as independent variables and seven
PSA variables (Pd, Pa, Pcp, fcp, �b0, �blf, and �bhf) as
response variables. The Wilks’ likelihood ratio (Friederichs
and Hense, 2003) was used to test the significance of each
canonical correlate.
Stepwise regression, performed in SAS JMPW (v9),

was then used to rank-order the relative contributions of
multiple landscape variables associated with each spectral
variable. Stepwise regression was used because it accounts
for correlations among the independent landscape vari-
ables. The order of variables in the stepwise regression
model provides an objective measure of the unique
contribution of each landscape variable to the hydrologic
response of these Piedmont watersheds. The level of entry
into the model was set to p = 0.05. Bivariate comparisons
were also examined for the following: (i) the level of
significance of bivariate correlations between landscape
and spectral variables, (ii) the existence of nonlinear
trends between variables, and (iii) departures from
normality and homoscedasticity.
Hydrol. Process. (2013)
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Table III. Statistical description of landscape variables, spectral
runoff variables (from area-normalized daily discharge values), and
spectral precipitation variables (from nonnormalized daily values)

Variable Minimum Maximum Mean�SD

Landscape variables
A 8 20 294 1466� 3307
OHS 1 7 4� 1
Dd 0.39 1.04 0.81� 0.15
Sc 0.0004 0.0112 0.0032� 0.0020
Rf 0.20 0.70 0.39� 0.11
SC% 31 83 58� 12
Zbr 87 151 138� 15
RS% 0.0 47.3 6.5� 10.8
Rpe 5.95 10.93 7.12� 0.89
%WW 0.2 11.0 2.7� 2.2
%UR 0.9 96.6 17.5� 23.1
%FO 2.9 90.4 45.8� 19.5
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To test hypotheses from previous studies on the effect
of landscape attributes on runoff patterns, we conducted
two additional analyses: one to examine how spectral
runoff properties change with landscape position (i.e.
stream order) and one to examine threshold responses
with urban coverage (i.e. a sudden change in linear
regression). Mudelsee (2007) hypothesized that hydro-
logic memory increases with watershed area. We tested
this hypothesis by comparing means and standard
deviations of spectral properties among watersheds of
different stream orders (OHS), using the Horton–Strahler
classification. This classification has weaknesses due to
dependency on mapping scale and inconsistency among
physiographic regions (Julian et al., 2012); but with the
use of a hydrography dataset mapped at the same scale
(National Hydrography Dataset; 1 : 24 000) and from the
same physiographic region (Piedmont), OHS is a relevant
variable that can be used to functionally group watersheds
according to their position in the landscape. That is, first-
order watersheds are headwater catchments with no
tributaries, second-order watersheds are formed by two
headwater catchments and are thus lower in the landscape,
and so on. For comparative purposes, we also characterized
watershed area across stream orders. The second hypothesis
we tested was that urban land cover thresholds exist, above
which urban land cover becomes the dominant influence on
runoff (sensuWang et al., 2001). In the same fashion as fcp
(Section on Power Spectral Analysis), urban thresholds
were identified using segmented linear regression, but this
time comparing the spectral runoff variables to urban
coverage (%UR).
Because of the difficulty of accounting for temporal

changes in land cover, a post hoc test was conducted to
test differences in spectral runoff variables among
dominant land covers of watersheds, where watersheds
with >50% urban coverage would be grouped as UR
(AG: >50% agriculture; FO: >50% forest). Watersheds
where no land cover exceeded 50% were labelled as
mixed (MX). The Steel–Dwass test was performed on all
pairs of dominant land cover. The significance of
difference among ranks was based on a quantile value
(q*) of 2.569 and an alpha level (a) of 0.05.
%AG 0.2 74.0 29.6� 20.3
Spectral runoff variables
Pd �13.38 �6.74 �9.42� 1.72
Pa �5.25 �3.06 �4.23� 0.48
�b0 0.28 1.90 0.86� 0.45
Pcp �9.39 �5.73 �7.31� 0.76
fcp 3.0 10.8 6.0� 1.2
�blf 0.16 1.17 0.44� 0.16
�bhf 0.32 4.63 1.82� 1.16

Spectral precipitation variables
Pd �0.64 �0.08 �0.43� 0.13
Pa �0.32 0.88 0.28� 0.24
�b0 0.07 0.20 0.13� 0.02
Pcp �0.67 0.46 0.11� 0.25
fcp 4.7 7.3 5.6� 0.6
�blf �0.03 0.06 0.02� 0.02
�bhf 0.35 0.55 0.42� 0.05

Measures of power (Pd, Pa, and Pcp) are log values (Figure 2). A and OHS

were not used in multivariate analyses because spectral variables were
already normalized by A, whereas OHS is not a continuous variable.
RESULTS AND DISCUSSION

We compared the landscape properties of 87 watersheds in
the Piedmont of the eastern USA (Section on Landscape
Characterizations) with their periodic responses of precipi-
tation/runoff using PSA (Section on Spectral Flow Regimes)
to define broad-scale statistical relationships between
precipitation/runoff and landscapes (Section on Relation-
ships between Landscape and Spectral Hydrologic Vari-
ables). CCA confirmed a strong and significant relationship
between spectral properties of runoff and their watershed
attributes, but a weaker relationship between PSA for
precipitation and landscape descriptors. A detailed examin-
ation of relationships between runoff spectra and landscape
properties provided a quantitative summary of land cover
effects on runoff patterns (Section on Land Cover Effects on
Copyright © 2013 John Wiley & Sons, Ltd.
Spectral Runoff Patterns), threshold responses in runoff with
urbanization (Section on Runoff Pattern Responses to Urban
Thresholds), changes in spectral properties across stream
order (Section onRunoff Patterns across StreamOrders), and
spectral metrics for a hydrological signature (Section on
Spectral Metrics for a Hydrologic Signature).

Landscape characterizations

The 87 study watersheds ranged from a small first-order
watershed with an area of 8 km2 to a large seventh-order one
with an area of 20 294 km2 (Table III, Figure 1). Stream
order (OHS) followed a normal-like distribution with most
watersheds (27 of 87) being of the fourth order. Mean daily
runoff for all watersheds ranged from 0.09 to 251m3/s.With
the use of the 16 watersheds with no reservoir storage, the
mean rainstorm recurrence interval (calculated from unique
flood peaks) for the Piedmont was 6.1� 0.7 days (mean
standard deviation).
Land cover varied widely among the watersheds

(Table III, Figure 1), with forest (%FO), agriculture
(%AG), and urban (%UR) being the three dominant
coverages, respectively. Water–wetland coverage (%WW)
never exceeded 11%. The summed coverage of barren,
grassland, and shrubland was 3%, on average. Given the
Hydrol. Process. (2013)
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large ranges of the three dominant land cover types, many
possible combinations were represented (Appendix A).
Among all watersheds, 40 were forest dominated (FO),
19 were agriculture dominated (AG), and nine were urban
dominated (UR). There were 19 mixed watersheds (MX),
where no land cover exceeded 50%. From1975 to 2001,%UR
and %WW increased by 3.6%� 7.8% and 2.1%� 1.8%,
respectively (Appendix A). Conversely, %AG and %FO
decreased by 7.9%� 7.6% and 1.7%� 10.0%, respec-
tively. Again, these changes are only broad estimates
because of the shortcomings of the 1975 NLCD (Jawarneh
and Julian, 2012). There were few large reservoirs in our
study area, and 90% of the watersheds had less than a
quarter of their average annual volume of water stored
behind dams (RS%). Average RS% was 6.5%� 10.8%.
With all watersheds lying within the Piedmont physio-
graphic province, the other landscape variables were
constrained (Table III) when compared with global ranges
(Knighton, 1998 and references within).
Spectral flow regimes

The statistical variables produced by PSA (Table II)
provide a synoptic description of a watershed’s flow regime.
In all spectral runoff periodograms (Figure 2 as an example),
spectral power decreased with frequency, with the overall
spectral slope (�b0) ranging from 0.28 to 1.90 (Table III).
The coefficient of determination around this regression line
ranged from 0.51 to 0.92, with variance increasing in the
lower 1/f ranges. The break in spectral slope (fcp) between
high-frequency and low-frequency runoff events is
determined by watershed response to synoptic weather
conditions (i.e. the characteristic intervals of rainstorms). The
period at which fcp for runoff occurred did not vary greatly
among watersheds, averaging 6.0� 1.2 days with a range of
3.0–10.8 days. This value matches the 6.1-day mean
rainstorm recurrence interval of this region and is similar to
fcp for precipitation (5.6� 0.6). Pandey et al. (1998) found
virtually the same fcp (~6 days) for 19 random watersheds
across the USA. Tessier et al. (1996) estimated fcp for
watersheds in France, finding that the shift in spectral slopes
matched regional rainstorm recurrence intervals with a
mean value of 16 days. This cross-point, however, depends
on the temporal resolution of data, with finer temporal data
allowing additional cross-points to be defined. For instance,
Sauquet et al. (2008) found a median cross-point of 27 h
using hourly discharge data from 34 French watersheds.
Whereas fcp was similar for precipitation and runoff, all

other spectral properties were quite different between
precipitation and runoff (Table III): precipitation had
much higher spectral power (i.e. more variance) and
much lower spectral slopes (i.e. less memory). The most
striking difference was the spectral slope for the low-
frequency domain (�blf), which was essentially 0 for
precipitation (white noise, which indicates a random
process) but 0.44� 0.16 for runoff (pink noise; Figure 2).
Spectral slopes (�b) are determined by the temporal

autocorrelation inherent in runoff data and, consequently, an
indication of hydrologic memory. Godsey et al. (2010)
Copyright © 2013 John Wiley & Sons, Ltd.
showed that spectral slopes reflect the response of runoff to
precipitation and landscape attributes, as determined ‘by the
heterogeneity of the flow path lengths and velocities’. Values
of �b near 0 occur when all periods of runoff are equally
represented, indicating a system with little memory (white
noise). The low-frequency domain for precipitation spectra
(Figure 2) is an excellent example of white noise.
Steep spectral slopes, on the other hand, correspond to long
retention times and thus greater hydrologic memory (red
noise) of previous storm events (Halley, 1996; Sabo and
Post, 2008). Most watersheds tend to have intermediate
levels of memory with pink noise (�b� 1; characteristic of
low-frequency flow events) or red noise (�b� 2; character-
istic of high-frequency flow events) evident (Sabo and Post,
2008). Results showed that runoff from the 87 Piedmont
watersheds followed these patterns with values of �blf that
averaged 0.44, never exceeding 1 (pink noise), and values of
�bhf that averaged 1.89 (red noise; Table III). Both�bhf and
�blf varied widely (coefficient of variation of 64% and 36%,
respectively), which we examine in subsequent sections to
determine if differences in runoff patterns between water-
sheds can be attributed to landscape structure.
Daily power (Pd) reflects day-to-day variance of flows,

where spring-fed rivers tend to have low (more negative)
values of Pd and ephemeral rivers tend to have higher
values of Pd (for additional examples, see Sabo and
Post, 2008). Because our data were based on daily flows,
Pd defines the endpoint for the linear regressions from
which �bhf was estimated, which explains why these
variables were strongly correlated (r=�0.83). Pcp and
�blf were also strongly correlated (r=�0.83). Given that
fcp is similar for all watersheds, it appears that short-term
hydrologic memory (�bhf) is dictated by day-to-day flow
variance (Pd), and long-term hydrologic memory (�blf) is
dictated by week-to-week flow variance (Pcp).
All watersheds showed a characteristic peak in variance at

annual scales (Pa). Year-to-year differences in weather have
been consistently shown by spectral analysis to be a
dominant periodic response (Tessier et al., 1996; Pandey
et al., 1998; Sauquet et al., 2008). Most Piedmont
watersheds also exhibited a smaller peak at 6-month intervals
that may be related to seasonal precipitation regimes but,
given the region’s relatively minimal seasonality in
precipitation, might be a simple harmonic of the peak in
variance at 1-year intervals. There was relatively little
deviation in Pa among all the watersheds (Table III),
suggesting that these 87 Piedmont watersheds were
experiencing similar year-to-year variability in interannual
precipitation regimes. Pa and fcp were not strongly correlated
with other spectral runoff variables, including each other.
None of the spectral precipitation variables were strongly
correlated. There were no obvious latitudinal or longitudinal
trends for any of the spectral runoff or precipitation variables.

Relationships between landscape and spectral hydrologic
variables

Distributional properties. Inspection of distributional
properties of dependent and independent variables showed
only minor departures from normality, homoscedasticity, or
Hydrol. Process. (2013)
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Table V. Stepwise regressions (forward selection, p< 0.05) and
bivariate correlations of spectral runoff variables on landscape

descriptors

Spectral Landscape Multivariate
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linearity. The greatest departures were in homoscedasticity
for Sc, Zbr, Rpe, %FO, and %UR; however, transformations
to correct for heteroscedasticity resulted in increased
nonlinearity or nonnormality. The only landscape variable
that displayed possible nonlinear trends with spectral
variables was Sc; however, log-transformations of Sc did
not improve correlations significantly (16% at most) or
consistently. Some log-transformations of Sc decreased the
correlation coefficient. Consequently, transformations were
not considered for statistical analyses.

Canonical correlation analysis. The results of the
CCAs, contrasting separately the PSA variables for runoff
and precipitation with landscape descriptors, showed that
three of seven canonical correlations were significant for
runoff (Table IVA) whereas two of seven were significant
for precipitation (Table IVB). The levels of significance of
the canonical correlations for precipitation were higher than
expected, especially because of the greater variance
associated with precipitation data (Figure 2) and overall
lower values for spectral slopes (Table III). The higher than
expected canonical correlations for precipitationmay be due
to an overfit by CCA (Friederichs and Hense, 2003) and/or
the climate properties that jointly produce landscape
features and precipitation regimes such as drainage density
(Dd) and precipitation effectiveness (Rpe) – two landscape
variables with high weights on the first canonical correlate.
The results for runoff are more easily interpreted: The

weight of PSA variables on the first canonical correlate was
related to the slopes (�b0 and �blf) and power (Pd) of the
spectral response, whereas the second correlate was related
to higher-frequency spectral properties (Pcp and �bhf). The
corresponding weights for the landscape variables indicate
that the first canonical correlate for runoff is related to
predominant subsurface processes (Sc, %WW, and %FO)
and the second to predominant overland runoff (%UR and
Zbr). Notably,Pa and fcp were not significantly related to any
of the canonical correlates, indicating that these variables are
relatively independent of landscape attributes.
Table IV. Canonical correlation relating ten landscape descriptors
against seven spectral variables for runoff (A) and precipitation (B)

Dimension
Canonical
correlation F df1 df2 p

A: runoff
1 0.818 3.22 70 391.7 <0.0001
2 0.726 2.27 54 346.2 <0.0001
3 0.540 1.57 28 299.2 0.02
4 0.493 1.28 18 250.2 0.07

B: precipitation
1 0.730 2.45 70 391.7 <0.0001
2 0.689 1.96 54 346.2 0.002
3 0.506 1.34 40 299.2 Ns
4 0.426 1.11 28 250.2 Ns

Dimension refers to the sequential numbering frommost to least important of
the canonical correlations (only the first four of seven dimensions are shown).
The canonical correlations are the estimated linear relationships between
landscape and spectral variables. The F ratios were estimated by Wilks’
likelihood ratio, testing the null hypothesis of no relationship; df1 and df2 are
the degrees of freedom for the F ratio, and p is the level of significance.

Copyright © 2013 John Wiley & Sons, Ltd.
Stepwise and bivariate regressions. A level of entry into
the stepwise model of p< 0.05was selected tominimize the
inclusion of variables with low explanatory power, which
lowered the overall coefficient of determination (r2) for each
model. Nevertheless, the identified dominant landscape
attributes explained much of the variability in the spectral
variables (Table V) with two exceptions: Pa (r

2 = 0.18) and
fcp (r2=0.20), which was also shown by CCA to be not
strongly correlated to landscape attributes. Of the remaining
five spectral runoff variables, land cover was the only
landscape attribute that appeared in every stepwise model.
%WWwas the primary independent variable for three of the
five regression models. The landscape variables %FO, %
UR, %AG, Sc, and RS% also appeared in stepwise models.
The landscape variables that did not appear in any of the five
stepwise models (Pa and fcp excluded) were Dd, Rf, SC%,
Zbr, and Rpe.

Land cover effects on spectral runoff patterns

Rivers respond to global climatic forcing that result in
common seasonal hydrologic responses for rivers in the
same physiographic region (Tessier et al., 1996; Sabo and
Post, 2008). However, the local environmental conditions
of the watershed will also influence hydrologic responses
and, in some cases, can be the dominant control (Phillips,
2007). In this study, we analysed hydrologic responses of
watersheds from the same physiographic province in an
attempt to minimize variation in climatic and geomorphic
factors and thus maximize our ability to evaluate the
effect of land cover on hydrologic patterns.
When watersheds were separated into dominant land

cover, distributions varied considerably for five of the
variable Step variable sequential r2 Bivariate r

Pd 1 %WW 0.22 �0.47***
2 %FO 0.35 �0.41***
3 Sc 0.40 0.38***
4 %UR 0.44 0.34**
5 %AG 0.48 0.15

Pa 1 %WW 0.18 0.42***
�b0 1 %WW 0.32 0.56***

2 Sc 0.42 �0.49***
3 %FO 0.51 0.38***

Pcp 1 %UR 0.21 0.45***
2 RS% 0.29 �0.33**

fcp 1 Rpe 0.15 �0.39***
2 RS% 0.20 0.23*

�blf 1 RS% 0.21 0.46***
2 %UR 0.34 �0.41***
3 %WW 0.40 0.37***

�bhf 1 %WW 0.33 0.57***
2 Sc 0.43 �0.50***
3 %FO 0.49 0.33**

Level of significance for bivariate relationships is indicated as follows:
*a< 0.05; **a< 0.01; ***a< 0.001.
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spectral runoff variables (Pd, �b0, �bhf, �blf, and Pcp),
but only minimally for Pa and fcp (Figure 3). The Steel–
Dwass test (q* = 2.569, a = 0.05) showed that the only
significant difference among dominant land covers for Pa

was a marginal one where UR ranked less than MX
(p = 0.045) and FO (p = 0.047). For fcp, AG (p= 0.008)
and UR (p= 0.026) ranked slightly less than FO. Overall,
UR had significantly higher values of Pd and Pcp than all
other dominant land covers, with p-values less than 0.004
for all tests. UR significantly differed from FO for all
spectral runoff variables and differed from MX for all
Figure 3. Distributions of spectral runoff variables among watersheds gro
dominant land cover

Copyright © 2013 John Wiley & Sons, Ltd.
variables except fcp. UR and AG had significantly
different values for Pd (p< 0.001), �b0 (p = 0.045), Pcp

(p< 0.001), and �blf (p< 0.001), but not for �bhf. AG
and FO were significantly different for Pd (p = 0.036),
�b0 (p = 0.001), and �bhf (p< 0.001). AG and MX were
also significantly different for �b0 (p= 0.017) and �bhf
(p = 0.001), but not Pd. FO and MX were not significantly
different for any of the spectral runoff variables.
The ranking of importance between spectral–landscape

relationships produced by stepwise regressions showed
that the coverage of wetlands (%WW) and urban areas
uped by dominant land cover (>50% coverage). Watersheds without a
are labelled mixed
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(%UR) had the strongest association with patterns of runoff
(Table V). These two land cover types have competing
hydrological effects because wetlands and other surface
water features increase hydrologic storage whereas the
sealed surfaces of urban areas decrease water storage
(Eshleman, 2004; Schoonover et al., 2006). Indeed, water-
sheds with high values of %WW displayed greater
hydrologic memory whereas watersheds with high values
of%UR had the opposite effect, as shown by strong positive
correlations between %WW and �bhf (r= 0.57) and strong
negative correlations between�blf and%UR (r=�0.41). In
sum, urbanization increased flow variance and decreased
watershed hydrologic memory.
In addition to land cover, two other landscape variables

had strong relationships with short-term hydrologic
memory (�bhf), both of which are directly related to
the immediate transport of water runoff: As channel slope
(Sc) increased, �bhf decreased (i.e. steeper slopes carry
away runoff faster, and thus less storage); and, as soil silt-
clay content (SC%) increased, �bhf decreased (i.e. lower
infiltration capacity leads to greater surface runoff, and
thus less subsurface storage). The respective order of
these two landscape variables in bivariate relationships
matches the order of influence these factors tend to have
on short-term runoff patterns (Black, 1991).
Given that long-termmemory in river runoff is influenced

by the spatiotemporal aggregation of high-frequency events
(Mudelsee, 2007), one may question why �blf and �bhf
were not equally affected by similar landscape attributes.
Because PSA estimates the power associated with each
period independently, the spectral slope for the low-
frequency domain is only partially determined by the
spectral slope for the high-frequency domain (�blf vs�bhf:
r = 0.49). Therefore, factors that influence immediate
transport of runoff following a rain event, such as Sc and
SC%, do not have as strong of an influence on long-term
hydrologic response estimated by �blf. The three most
important landscape variables affecting long-term hydro-
logic memory, as identified by the stepwise model for�blf,
were those related to long-term water storage: RS%, %UR,
and %WW. For heavily urbanized watersheds (values of %
UR> 40), �blf averaged only 0.22 – a value approaching
that of white noise. The separate assessment of short-term
and long-term memory of watersheds, made possible by the
use of segmented regression methods, provides important
insights into the change in hydrologic response associated
with climatic versus landscape change.
It is surprising that reservoir storage (RS%) was not

strongly related to the spectral slope for the high-frequency
domain, �bhf. A possible explanation is that most dams in
the Piedmont are small and did not alter hydrographs
considerably (RS% averaged only 6.5%� 10.8%). In
watersheds with many and/or large dams, such as the
Sacramento River basin (Singer, 2007), RS% becomes a
dominant control on spectral hydrologic patterns, affecting
both low-frequency and high-frequency measures. Simi-
larly, Zbr and SC%were relatively homogeneous across the
Piedmont watersheds and therefore did not emerge as
dominant controls in any of the stepwise models. Because
Copyright © 2013 John Wiley & Sons, Ltd.
soil depth and composition have been shown to greatly
affect water residence times (Sayama and McDonnell,
2009; Tetzlaff et al., 2009b), these landscape variables can
be important determinants of spectral hydrologic patterns
of more physiographically diverse watersheds. Further, the
moderate relief of the Piedmont constrains the range of
topographic effects, resulting in Sc playing a relatively
minor role in shaping hydrologic patterns. In more
mountainous regions, such as the nearby Ridge and
Valley province, topographic controls will likely
emerge as dominant controls on hydrologic patterns
(McGuire et al., 2005; Tetzlaff et al., 2009a).
The effect of temporal changes in land cover on runoff

patterns was not assessed in this study, although ‘modest’
changes did occur (Appendix A). The changes in our
87 Piedmont watersheds roughly matched those of other
analyses in the region (Griffith et al., 2003), which found
that between 1973 and 2000, %UR increased by 5%,
accompanied by a 4% decrease in %FO and a 1% decrease
in %AG. Water and wetland coverage remained virtually
unchanged during this period. These temporal changes
likely accounted for some of the variability in our relation-
ships. By combining the techniques described in this paper
(including PSA) with ones that incorporate changing flow
regimes (e.g. Richter et al., 1996), perhaps wewill be able to
understand both spatial and temporal consequences of land
cover change on hydrologic patterns.

Runoff pattern responses to urban thresholds

There were clear and statistically significant thresholds
of change (as identified by segmented linear regression)
in three of the spectral runoff variables when regressed
against %UR (Figure 4). The most distinct threshold was
in the relationship between Pd and %UR at 10.6� 6.8 %
UR. Above this threshold, Pd was highly correlated to %
UR (r= 0.67) but weakly correlated below (r=�0.20).
Thresholds also existed for Pcp (13.2� 4.7 %UR)
and �blf (14.4� 3.5 %UR). These thresholds over the
range of 10–15 %UR indicate that low levels of urban
development had little effect on runoff properties, but
further increases in urbanization caused predictable
increases in spectral power (Pd and Pcp) and a predictable
decrease in long-term hydrologic memory (�blf), which
approached white noise levels (i.e. no memory) near
100 %UR. A similar but inverse relationship existed
between these three spectral variables (Pd, Pcp, and �blf)
and %FO: 55.9� 4.3, 46.6� 4.5, and 46.1� 3.6 %FO,
respectively. Once watersheds lost half of their forest,
runoff became flashier, and hydrologic memory decreased
in a predictable fashion.
The consistency of these urban thresholds suggests that

once a Piedmont watershed exceeds 10% urban coverage,
runoff patterns become progressively dominated by the
watershed’s impervious surface coverage. Stream ecosys-
tem studies have also reported that stream biota exhibit
threshold responses at 10–15% levels of watershed
imperviousness (Paul and Meyer, 2001; Wang et al.,
2001; Roy et al., 2003; Utz et al., 2009), possibly linked
Hydrol. Process. (2013)
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Figure 4. Urban land cover thresholds in spectral runoff variables. Thresholds (i.e. cross-points, cp) were identified using segmented linear regression.
Correlation coefficients (r) and p-values are given for linear regressions below and above the cross-point
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to hydrological responses. Indeed, hydrogeomorphic
thresholds have also been found at 10% watershed
imperviousness (Booth and Jackson, 1997). Threshold
responses in runoff processes, like those illustrated earlier,
are a common occurrence (Zehe and Sivapalan, 2009). If
land cover threshold effects were incorporated into
hydrologic models, a considerable amount of uncertainty
may be reduced. Further, the increasing levels of global
deforestation and urbanization makes the estimation of land
cover thresholds for hydrological responses a priority.

Runoff patterns across stream orders

None of the spectral precipitation variables varied
significantly with stream order (Figure 5), which is
expected given that all of our watersheds were within the
same physiographic province and precipitation records
are point measurements. Conversely, all of the spectral
runoff variables assessed in this study, except fcp and
Pa (the two variables least affected by landscape
attributes), displayed trends with stream order (Figure 6).
Of the remaining five spectral runoff variables, all
displayed a similar trend where they remained approxi-
mately equal for stream orders 1 through 3. After the third
order, runoff variance (Pd and Pcp) decreased and
hydrologic memory (�b0, �blf, and �bhf) increased, all
fairly linearly. A combination of Wilcoxon (between
orders 1–3 and orders 4–7) and Steel–Dwass (among all
pairs) tests confirmed all of the aforementioned relation-
Figure 5. Trends in spectral precipitation variables with stream order for
all 87 watersheds. Points represent mean values for the respective stream
order, with error bars representing one standard deviation. Variable names
are listed in order of their mean value at the seventh order. Note that none

of the variables have a trend with stream order

Figure 6. Trends in spectral runoff variables with stream order for all 87
watersheds (A) and expanded axis for spectral slope variables (B). Points
represent mean values for the respective stream order, with error bars

representing one standard deviation

Copyright © 2013 John Wiley & Sons, Ltd.
ships. Watershed area was highly correlated to OHS

(r=0.94; log A= 0.904 + 1.188 *OHS). Accordingly, the
watershed area that corresponds to the third-order landscape
threshold in the Piedmont is approximately 87 km2.
An enduring question in hydrologic theory that has yet to

be answered is at what spatial scale do watershed processes
become dominant over precipitation patterns (Sivapalan,
2003; McDonnell et al., 2007; Hrachowitz et al., 2010).
Keeping in mind that PSA measures the effect of each
period independently and that we used area-normalized
discharge in our analyses, we show in our results (Figure 6)
that the scale where watershed processes begin to dominate
hydrologic patterns (at least for the Piedmont) exists
between stream orders 3 and 4. If the influence of watershed
processes on spectral runoff patterns was negligible, then
Hydrol. Process. (2013)
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Figure 7. Spectral runoff metrics to characterize hydrologic signatures of
watersheds. None of the four variables are strongly correlated
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spectral properties would be solely related to precipitation
patterns and would not change appreciably with stream
order, as was the case for the first to third orders and as
evidenced by Figure 5. We contend that these trends are not
just artefacts of fast-responding processes (overland flow,
preferential flow, etc.) versus slow-responding processes
(groundwater flow). If this was the case, the longitudinal
trends would have been gradual and would not have
exhibited a ‘switch’ after the third order, and this ‘switch’
would have only occurred for spectral variables character-
izing short-term (<6 days) events.
We do acknowledge, however, that runoff becomes

more serially correlated in the downstream direction
simply because water in larger watersheds takes longer to
move through the system compared with that in smaller
watersheds, a result supported by previous studies (Gupta
et al., 1994; Chetelat and Pick, 2001; Mudelsee, 2007).
The difference in rates of change with stream order
between Pd and Pcp is evidence of this effect and suggests
that weekly flow variability (Pcp) is less scale dependent
than daily flow variability (Pd). Similarly, the higher rate
of change with stream order for �bhf compared with that
for �blf supports the conclusion that hydrologic memory
for high-frequency flow events is more scale dependent.
The change in spectral runoff propertieswith streamorder

supports Mudelsee’s (2007) hypothesis that hydrologic
memory increases in the downstream direction; however,
we caution that such relationships may only apply when
land cover and reservoir storage do not change greatly
across the watershed. In watersheds where the spatial
distribution of land cover and reservoir storage vary
considerably, these longitudinal trends may not be evident.
Consequently, the arrangement of land cover within a
watershed can have considerable influence on hydrologic
patterns (Sayama andMcDonnell, 2009;Mejia andMoglen,
2010). The design of this study did not allow us to assess the
effects of spatial heterogeneity, which for some of the larger
watersheds was relatively high (Figure 1).

Spectral metrics for a hydrologic signature

The following criteria were used to select a subset of
spectral variables to represent the hydrologic signature
(i.e. metrics that characterize runoff patterns): (i) two
variables that characterize low-frequency events, one
dictated by precipitation and the other more influenced by
landscape attributes; (ii) two variables that characterize high-
frequency events, one dictated by precipitation and the other
more influenced by landscape attributes; and (iii) selected
variables that were minimally correlated with one another.
Of the seven spectral variables analysed, the variables that
best satisfied these conditions were Pa, fcp, �blf, and �bhf
(Figure 7). Pa reflects interannual precipitation consistency
(low frequency), and fcp indicates rainstorm recurrence
interval (high frequency). Both of these variables were
minimally correlated to landscape attributes. The variables
�blf and�bhf, which reflect watershed hydrologic memory
of low-frequency and high-frequency events, respectively,
were both significantly correlated to landscape features,
particularly those responsible for water storage.
Copyright © 2013 John Wiley & Sons, Ltd.
The usefulness of fcp for hydrologic signatures is that it
characterizes rainstorm frequency (without needing
precipitation data) and thus is a first-order indicator of
hydrologic variability over short timescales, whereas Pa is
an indicator of hydrologic variability over longer timescales.
The spectral slopes,�blf and�bhf, summarize the effects of
landscape attributes on runoff regimes over the entire flow
record (both long and short terms) and thus provide a
measure not only of runoff variability but also of runoff
magnitude, intensity, and duration. When all four spectral
variables are considered, precipitation–landscape interac-
tions can be assessed over a wide range of scales.
CONCLUSIONS

Rivers are integrators of landscape processes, with the
quantity and quality ofwater released at the watershed outlet
reflecting all that has happened within the watershed.
Although the effects of geomorphology and land cover on
watershed runoff are generally understood (Oudin et al.,
2008), clear quantitative relationships between watershed
structure and hydrologic patterns have yet to be established
for large heterogeneous watersheds. Moreover, physics-
based hydrological models that work at small scales have
been of limited use for predicting broad-scale dynamics of
large watersheds (McDonnell et al., 2007). Consequently,
‘our ability to make predictions at the watershed scale has
advanced relatively little’ (Sivapalan, 2003).
Despite the fact that each landscape has an inherent

uniqueness (Phillips, 2007), there remains a need to develop
macroscale laws for watersheds (Dooge, 1986; McDonnell
et al., 2007). PSA is a useful tool in this regard as it captures
both periodic and stochastic variability of stream flow. By
combining hydrologic and landscape data for 87 watersheds
over a wide range of sizes, we were able to identify
significant relationships between the spectral properties of
runoff and landscape descriptors, including threshold
behaviours and trends across seven orders of watersheds.
Limiting the assessment of watersheds to the Piedmont of
the eastern USA minimized variations in physiography,
which allowed a more precise analysis of the effects of land
cover on hydrologic patterns.
Dooge’s (1986) vision of multiscale hydrologic laws that

describe the relationship between landscape properties and
watershed response is still unfulfilled. However, this study
has made several important steps towards this goal. First, we
found a characteristic frequency (6 days in this case) below
Hydrol. Process. (2013)
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which synoptic weather conditions dominate runoff patterns
(Figure 2). Other studies in vastly different systems have
found similar cross-point frequencies (Tessier et al., 1996;
Pandey et al., 1998). Second, we were able to show that land
cover has important, and predictable, effects on runoff
patterns across all periods (Tables IV and V; Figure 3) – an
effect that was only revealed by consideration of watersheds
within a single physiographic region. Third, we identified
urban coverage thresholds that produced significant changes
in runoff patterns (Figure 4). Fourth, we found the watershed
scale (third order) at which watershed processes likely
become dominant over precipitation regime in determining
runoff patterns (at least for the Piedmont physiographic
province), as evidenced by the change in trend of spectral
runoff variables after the third order (Figure 6). Finally, we
present a matrix that characterizes the hydrologic signatures
of rivers on the basis of precipitation versus landscape effects
and low-frequency versus high-frequency events (Figure 7).
The concepts and methods presented in this manuscript

can be generally applied to all river systems to characterize
temporal patterns of watershed runoff, especially those
associated with climatic and land cover change. We suggest
that further studies use these concepts and methods to aid in
the development of a greatly needed broad-scale watershed
classification (McDonnell andWoods, 2004). Indeed, many
of the questions we addressed are those that have been
proposed to develop an effective watershed classification
(Wagener et al., 2007; Sawicz et al., 2011).
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APPENDIX A

Land cover changes among the 87 study watersheds 1975–2001.
Watershed ID increases from north to south, where 1 is the northernmost
watershed (Figure 1). Dominant land cover is the one that exceeds 50%, or
mixed when none exceed 50%.
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